Liver Segmentation from CT Image Using Fuzzy Clustering and Level Set

نویسندگان

  • Xuechen Li
  • Suhuai Luo
  • Jiaming Li
چکیده

This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer; second, a spatial fuzzy c-mean clustering combining with anatomical prior knowledge is employed to extract liver region automatically; thirdly, a distance regularized level set is used for refinement; finally, morphological operations are used as post-processing. The experiment result shows that the method can achieve high accuracy (0.9986) and specificity (0.9989). Comparing with standard level set method, our method is more effective in dealing with over-segmentation problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Spatial Fuzzy Clustering with Level Set Methods for Liver Segmentation from Computed Tomography Scans

This article presents a fully automatic segmentation method of liver CT scans using fuzzy cmean clustering and level set. First, the difference of unique image is improved to make boundaries clearer; second, a spatial fuzzy c-mean clustering combining with anatomical previous information is engaged to extract liver area automatically Thirdly, a distance regularized level set is used for modific...

متن کامل

A Robust system for Segmentation of primary Liver Tumor in CT images pdfkeywords=Adaptive Thresholding, Mathematical Morphology, Global Thresholding, Region Growing, Fuzzy C Mean Clustering

The liver is a vital organ in human body, and Liver Tumor is considered to be a fatal disease. The tumors which can occur in Liver are cancerous or non-cancerous. For diagnosis of tumor, detection and demarcation of tumor is the initial step to be performed. After detection of the tumor, its type can be determined by using technique like biopsy, which is an invasive technique. To avoid such an ...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013